题目内容

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)求cosA+sinC的取值范围.
分析:(1)先利用正弦定理求得sinB的值,进而求得B.
(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.
解答:解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,
所以sinB=
1
2

由△ABC为锐角三角形得B=
π
6

(Ⅱ)cosA+sinC=cosA+sin(π-
π
6
-A)
=cosA+sin(
π
6
+A)
=cosA+
1
2
cosA+
3
2
sinA
=
3
sin(A+
π
3
)

由△ABC为锐角三角形知,0<A<
π
2
π
3
<A+
π
3
6

所以
1
2
<sin(A+
π
3
)< 
3
2

由此有
3
2
3
sin(A+
π
3
)<
3
2
×
3
=
3
2

所以,cosA+sinC的取值范围为(
3
2
3
2
)
点评:本题主要考查了正弦定理得应用和三角函数中两角和公式的运用.涉及了正弦函数的性质,考查了学生对三角函数知识的把握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网