题目内容
若f(x)=a+
是奇函数,则a=______.
| 1 |
| 2x+1 |
函数f(x)=a+
的定义域为R,且为奇函数,
则 f(0)=a+
=0,得a+
=0,得 a=-
,
检验:若a=-
,则f(x)=-
+
=
,
又f(-x)=
=-
=-f(x) 为奇函数,符合题意.
故答案为-
.
| 1 |
| 2x+1 |
则 f(0)=a+
| 1 |
| 20+1 |
| 1 |
| 2 |
| 1 |
| 2 |
检验:若a=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
| 1-2x |
| 2(2x+1) |
又f(-x)=
| 1-2-x |
| 2(2-x+1) |
| 1-2x |
| 2(2x+1) |
故答案为-
| 1 |
| 2 |
练习册系列答案
相关题目