题目内容
(12分)关于x的不等式|x-2|+|x-a|≥a在R上恒成立,求实数a的取值范围.
{a|a≤1}
解析:
(1)当a≤0时,不等式|x-2|+|x-a|≥a在R上恒成立;(2)当a>0时,由于|x-2|+|x-a|≥|2-a|,要使不等式|x-2|+|x-a|≥a恒成立,只要|2-a|≥a即可,
解得0<a≤1;综上(1)和(2)可知,实数a的取值范围为{a|a≤1}.
练习册系列答案
相关题目
| 下列命题: ①设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为-
②关于x的不等式(a-3)x2<(4a-2)x对任意的a∈(0,1)恒成立,则x的取值范围是(-∞,-1]∪[
③变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则r2<0<r1; ④下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
以上命题正确的个数是( ) |