题目内容

1.已知sinx+cosx=$\frac{1}{5}$.
(1)求sinx-cosx的值;
(2)求$\frac{si{n}^{4}x+co{s}^{4}x+si{n}^{2}xco{s}^{2}x}{2-sin2x}$的值.

分析 (1)把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出2sinxcosx的值,原式平方利用完全平方公式及同角三角函数间基本关系化简,开方即可求出sinx-cosx的值.
(2)利于平方和公式和二倍角公式化简,代入sin2x的值,即可求值.

解答 解:(1)∵sinx+cosx=$\frac{1}{5}$.两边平方可得:1+sin2x=$\frac{1}{25}$,解得:sin2x=-$\frac{24}{25}$,
∴sinx-cosx=$±\sqrt{(sinx-cosx)^{2}}$=±$\sqrt{1-sin2x}$=±$\sqrt{1+\frac{24}{25}}$=$±\frac{7}{5}$.
(2)∵由(1)可得sin2x=-$\frac{24}{25}$,
∴$\frac{si{n}^{4}x+co{s}^{4}x+si{n}^{2}xco{s}^{2}x}{2-sin2x}$=$\frac{(si{n}^{2}x+co{s}^{2}x)^{2}-si{n}^{2}xco{s}^{2}x}{2-sin2x}$=$\frac{1-\frac{si{n}^{2}2x}{4}}{2-sin2x}$=$\frac{1-\frac{(-\frac{24}{25})^{2}}{4}}{2-(-\frac{24}{25})}$=$\frac{13}{50}$.

点评 本题主要考查了完全平方公式及同角三角函数间基本关系式,二倍角公式的应用,考查了计算能力,熟练掌握相关公式是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网