题目内容
已知函数
【答案】分析:由函数最小值可得A,由周期为16可求ω,根据所过点(6,0)及φ的范围可得φ值.
解答:解:由题意可知:
,
由周期公式可得到:
,
又∵ω>0,∴
,∴
,
又函数图象过点(6,0),
(
+φ)=0,即
,
又∵
,∴
,
所以函数解析式是:
.
点评:本题考查由函数y=Asin(ωx+φ)的部分图象确定函数解析式,一般思路为:由函数最值确定A,由周期确定ω,由特殊点求出φ值.
解答:解:由题意可知:
由周期公式可得到:
又∵ω>0,∴
又函数图象过点(6,0),
又∵
所以函数解析式是:
点评:本题考查由函数y=Asin(ωx+φ)的部分图象确定函数解析式,一般思路为:由函数最值确定A,由周期确定ω,由特殊点求出φ值.
练习册系列答案
相关题目
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()