题目内容
数列{an}满足a1=0,an+1=an+n那么a100的值是分析:由题意知a2-a1=1,a3-a2=2,…,a100-a99=99,所以a100=a1+(a2-a1)+(a3-a2)+…+(a100-a99)=0+1+2+…+99=4950.
解答:解:∵a1=0,an+1=an+n,
∴a2-a1=1,a3-a2=2,…,a100-a99=99,
∴a100=a1+(a2-a1)+(a3-a2)+…+(a100-a99)
=0+1+2+…+99
=
(0+99)
=4950.
答案:4950.
∴a2-a1=1,a3-a2=2,…,a100-a99=99,
∴a100=a1+(a2-a1)+(a3-a2)+…+(a100-a99)
=0+1+2+…+99
=
| 100 |
| 2 |
=4950.
答案:4950.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目