题目内容
设已知f(x)=2cos2x+
sin2x+a,(a∈R)
(1)若x∈R,求f(x)的单调增区间;
(2)若x∈[0,
]时,f(x)的最大值为4,求a的值;
(3)在(2)的条件下,求满足f(x)=1且x∈[-π,π]的x的集合.
| 3 |
(1)若x∈R,求f(x)的单调增区间;
(2)若x∈[0,
| π |
| 2 |
(3)在(2)的条件下,求满足f(x)=1且x∈[-π,π]的x的集合.
(1)∵f(x)=2cos2x+
sin2x+a=2sin(2x+
)+a+1,
∴-
+2kπ≤2x+
≤
+2kπ,k∈z,解得:-
+2kπ≤2x+
≤
+2kπ,k∈z,
∴f(x)的单调增区间为x∈[-
+kπ,
+kπ],k∈z,
(2)∵x∈[0,
],∴当x=
时,sin(2x+
)=1,即f(x)的最大值为3+a=4,∴a=1
(3)∵2sin(2x+
)+2=1,∴sin(2x+
)=-
,∴2x+
=-
+2kπ或-
+2kπ,k∈z,
∵x∈[-π,π],∴x的集合为{-
,
,-
,
}.
| 3 |
| π |
| 6 |
∴-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
∴f(x)的单调增区间为x∈[-
| π |
| 3 |
| π |
| 6 |
(2)∵x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
(3)∵2sin(2x+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∵x∈[-π,π],∴x的集合为{-
| π |
| 6 |
| 5π |
| 6 |
| π |
| 2 |
| π |
| 2 |
练习册系列答案
相关题目