题目内容
如图,F1,F2是椭圆C1:
+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )

| A. | B. | C. | D. |
D
由椭圆定义得,|AF1|+|AF2|=4,
|F1F2|=2
=2
,
因为四边形AF1BF2为矩形,
所以|AF1|2+|AF2|2=|F1F2|2=12,
所以2|AF1||AF2|=(|AF1|+|AF2|)2-(|AF1|2+|AF2|2)=16-12=4,
所以(|AF2|-|AF1|)2=|AF1|2+|AF2|2-2|AF1||AF2|=12-4=8,
所以|AF2|-|AF1|=2
,
因此对于双曲线有a=
,c=
,
所以C2的离心率e=
=
.
故选D.
|F1F2|=2
因为四边形AF1BF2为矩形,
所以|AF1|2+|AF2|2=|F1F2|2=12,
所以2|AF1||AF2|=(|AF1|+|AF2|)2-(|AF1|2+|AF2|2)=16-12=4,
所以(|AF2|-|AF1|)2=|AF1|2+|AF2|2-2|AF1||AF2|=12-4=8,
所以|AF2|-|AF1|=2
因此对于双曲线有a=
所以C2的离心率e=
故选D.
练习册系列答案
相关题目