题目内容
(2013•铁岭模拟)已知函数f(x)=cos2x+sinx,那么下列命题中假命题是( )
分析:由f(x)=cos2x+sinx,知f(-x)=cos2x-sinx,故f(x)既不是奇函数也不是偶函数;由f(x)=cos2x+sinx=1-sin2x+sinx=0,得sinx=
,故f(x)在[-π,0]上恰有2个零点;由f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
)2+
,故f(x)是周期函数,且f(x)在(
,
)上是增函数.
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| π |
| 2 |
| 5π |
| 6 |
解答:解:∵f(x)=cos2x+sinx,
∴f(-x)=cos2x-sinx,
故f(x)既不是奇函数也不是偶函数,即A是真命题;
∵由f(x)=cos2x+sinx=1-sin2x+sinx=0,
得sinx=
,
∴f(x)在[-π,0]上恰有2个零点,即B是假命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
)2+
,
∴f(x)是周期函数,即C是真命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
)2+
,
∴f(x)在(
,
)上是增函数,即D是真命题.
故选B.
∴f(-x)=cos2x-sinx,
故f(x)既不是奇函数也不是偶函数,即A是真命题;
∵由f(x)=cos2x+sinx=1-sin2x+sinx=0,
得sinx=
| ||
| 2 |
∴f(x)在[-π,0]上恰有2个零点,即B是假命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
| 1 |
| 2 |
| 3 |
| 4 |
∴f(x)是周期函数,即C是真命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
| 1 |
| 2 |
| 3 |
| 4 |
∴f(x)在(
| π |
| 2 |
| 5π |
| 6 |
故选B.
点评:本题考查命题的真假判断,是基础题.解题时要注意三角函数性质的灵活运用.
练习册系列答案
相关题目