题目内容
已知数列{xn}满足:x1=1,xn+1=| 5(1+xn) |
| 5+xn |
(1)证明:xn<xn+1(n∈N*);
(2)证明:
| 5 |
| 4 |
| 5 |
分析:(1)由条件xn+1-xn=
•(xn-xn-1),故只需判断其大于0即可;
(2)构造an=
,利用分析法证明,欲证
-xn<2•(
)n-1(n∈N*),即证
-xn<2•(
)n-1,从而可证.
| 20 |
| (5+xn)(5+xn-1) |
(2)构造an=
xn+
| ||
xn-
|
| 5 |
| 4 |
| 5 |
| 5 |
| 4 |
| 5 |
解答:解:(1)证明:xn+1-xn=
•(xn-xn-1)由条件,显然xn>0,∴xn+1-xn,xn-xn-1符号相同,依次迭代可知,∴xn+1-xn,x2-x1符号相同,而x2-x1>0,∴xn+1-xn>0,即xn<xn+1(n∈N*);
(2)令an=
,∴
=
,∴an=-(
)n,∴an-1=-(
)n-1,∴
-xn=
欲证
-xn<2•(
)n-1(n∈N*),即证
-xn<2•(
)n-1,即证
+
•(
)n-1>(
)n-1
∵
> 1, (
)n-1>(
)n-1,∴
•(
)n-1>(
)n-1,∴
+
•(
)n-1>(
)n-1得证.
| 20 |
| (5+xn)(5+xn-1) |
(2)令an=
xn+
| ||
xn-
|
| an+1 |
| an |
| ||
|
| ||
|
| ||
|
| 5 |
2
| ||||||
1+(
|
欲证
| 5 |
| 4 |
| 5 |
| 5 |
| 4 |
| 5 |
| 1 | ||
|
3+
| ||
2
|
3+
| ||
| 2 |
| 4 |
| 5 |
∵
3+
| ||
2
|
3+
| ||
| 2 |
| 4 |
| 5 |
3+
| ||
2
|
3+
| ||
| 2 |
| 4 |
| 5 |
| 1 | ||
|
3+
| ||
2
|
3+
| ||
| 2 |
| 4 |
| 5 |
点评:本题考查数列的性质和应用,解题时要认真审题,注意分析法的证明过程.
练习册系列答案
相关题目