题目内容
已知数列{xn}满足:x1=1且xn+1=
,n∈N*.
(1)计算x2,x3,x4的值;
(2)试比较xn与2的大小关系;
(3)设an=|xn-2|,Sn为数列{an}前n项和,求证:当n≥2时,Sn≤2-
.
xn+4 |
xn+1 |
(1)计算x2,x3,x4的值;
(2)试比较xn与2的大小关系;
(3)设an=|xn-2|,Sn为数列{an}前n项和,求证:当n≥2时,Sn≤2-
2 |
2n |
分析:(1)利用已知的递推式,n分别取2,3,4,代入计算即可得到x2,x3,x4的值;
(2)根据条件可得xn+1-2与xn-2相反,而x1=1<2,则x2>2,依此类推有:x2n-1<2,x2n>2;
(3)根据递推式,当n≥2时,xn+1=
=1+
,则xn>1,所以我们有|xn+1-2|=|
-2|=
<
|xn-2|,从而可得an<
an-1<…<(
)n-1a1=(
)n-1(n≥2),再求和,即可得到所要证明的结论.
(2)根据条件可得xn+1-2与xn-2相反,而x1=1<2,则x2>2,依此类推有:x2n-1<2,x2n>2;
(3)根据递推式,当n≥2时,xn+1=
xn+4 |
xn+1 |
3 |
xn+1 |
xn+4 |
xn+1 |
|xn-2| |
xn+1 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
解答:(1)解:∵x1=1,xn+1=
,n∈N*
∴x2=
=
;x3=
=
;x4=
=
.…(3分)
(2)解:∵当n≥2时,xn+1-2=
-2=
=-
又xn+1=
=1+
,x1=1,则xn>0
∴xn+1-2与xn-2相反,而x1=1<2,则x2>2
依此类推有:x2n-1<2,x2n>2…(8分)
(3)证明:∵当n≥2时,xn+1=
=1+
,x1=1,
∴xn>1,
∴|xn+1-2|=|
-2|=
<
|xn-2|
∴an<
an-1<…<(
)n-1a1=(
)n-1(n≥2)
∴
an<1+
+(
)2+…+(
)n-1=
=2-21-n
∴当n≥2时,Sn≤2-
.…(14分)
xn+4 |
xn+1 |
∴x2=
1+4 |
1+1 |
5 |
2 |
| ||
|
13 |
7 |
| ||
|
41 |
20 |
(2)解:∵当n≥2时,xn+1-2=
xn+4 |
xn+1 |
-xn+2 |
xn+1 |
xn-2 |
xn+1 |
又xn+1=
xn+4 |
xn+1 |
3 |
xn+1 |
∴xn+1-2与xn-2相反,而x1=1<2,则x2>2
依此类推有:x2n-1<2,x2n>2…(8分)
(3)证明:∵当n≥2时,xn+1=
xn+4 |
xn+1 |
3 |
xn+1 |
∴xn>1,
∴|xn+1-2|=|
xn+4 |
xn+1 |
|xn-2| |
xn+1 |
1 |
2 |
∴an<
1 |
2 |
1 |
2 |
1 |
2 |
∴
n |
i=1 |
1 |
2 |
1 |
2 |
1 |
2 |
1-(
| ||
1-
|
∴当n≥2时,Sn≤2-
2 |
2n |
点评:本题以数列递推式为载体,考查数列的项及项的性质,考查放缩法证明不等式,同时考查等比数列的求和,解题的关键是正确运用好递推式.
练习册系列答案
相关题目