题目内容
x,y是两个不相等的正数,且满足x3-y3=x2-y2,则[9xy]的最大值为______.(其中[x]表示不超过x的最大整数).
∵x,y是两个不相等的正数,且满足x3-y3=x2-y2,∴x2+xy+y2=x+y,
将其看成y的函数,解出y=
(1-x±
),由定义域知-
<x<1,
若y=
(1-x-
),
解y>0,1-x-
•
>0,1-x>1+3x,x<0,与x,y同为正数不符,
所以y=
(1-x+
),且y>0,x>0,
(1+2x-3x2)=3[
-(x-
)2],
设x-
=
sinα,即x=
(1+2sinα),其中-
≤α≤
,
由x>0,知-
<α≤
,
y=
(1-x+
)=
(1-sinα+
cosα),
由x,y不相等,知1+2sinα≠1-sinα+
cosα,tanα≠
,知α≠
,
9xy=(1+2sinα)(1-sinα+
cosα)=1+sinα+
cosα-2sin2α+2
sinαcosα,
∵(sinα+
cosα)2=sin2α+2
sinαcosα+3cos2α=3-2sin2α+2
sinαcosα,
9xy=-2+sinα+
cosα+(sinα+
cosα)2=(sinα+
cosα+
)2-
,
∵sinα+
cosα=2sin(α+
),-
<α≤
,α≠
,
∴
<α+
≤
,但α+
≠
,
∴1≤2sin(α+
)<2.
所以9xy=(sinα+
cosα+
)2-
<(2+
)2-
=4.
∴[9xy]的最大值为3.
故答案为:3.
将其看成y的函数,解出y=
| 1 |
| 2 |
| 1+2x-3x2 |
| 1 |
| 3 |
若y=
| 1 |
| 2 |
| 1+2x-3x2 |
解y>0,1-x-
| 1+3x |
| 1-x |
所以y=
| 1 |
| 2 |
| 1+2x-3x2 |
(1+2x-3x2)=3[
| 4 |
| 9 |
| 1 |
| 3 |
设x-
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| π |
| 2 |
| π |
| 2 |
由x>0,知-
| π |
| 6 |
| π |
| 2 |
y=
| 1 |
| 2 |
| 1+2x-3x2 |
| 1 |
| 3 |
| 3 |
由x,y不相等,知1+2sinα≠1-sinα+
| 3 |
| 1 | ||
|
| π |
| 6 |
9xy=(1+2sinα)(1-sinα+
| 3 |
| 3 |
| 3 |
∵(sinα+
| 3 |
| 3 |
| 3 |
9xy=-2+sinα+
| 3 |
| 3 |
| 3 |
| 1 |
| 2 |
| 9 |
| 4 |
∵sinα+
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
∴
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| π |
| 2 |
∴1≤2sin(α+
| π |
| 3 |
所以9xy=(sinα+
| 3 |
| 1 |
| 2 |
| 9 |
| 4 |
| 1 |
| 2 |
| 9 |
| 4 |
∴[9xy]的最大值为3.
故答案为:3.
练习册系列答案
相关题目