题目内容
设等差数列{an}的前n项和为Sn,已知a6=13,S10=120.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=
| 2 | an•an+1 |
分析:(I)用“a1,d”法将a6,s10用a1和d表示,解关于a1和d的二元一次方程组.
(II)将an代入bn=
求得bn再选用裂项法求得Tn.
(II)将an代入bn=
| 2 |
| an•an+1 |
解答:解:(Ⅰ)设数列{an}的公差为d,(1分)
由S10=120,得2a1+9d=24,(2分)
又a6=a1+5d=13.(3分)
解得a1=3,d=2,(5分)
因此{an}的通项公式是:an=2n+1,(n=1,2,3,).(6分)
(Ⅱ)由(Ⅰ)知bn=
=
=
=
-
(9分)
所以Tn=b1+b2+b3++bn-2+bn-1+bn
=(
-
)+(
-
)+(
-
)++(
-
)+(
-
)+(
-
)(11分)
=
-
=
.(13分)
由S10=120,得2a1+9d=24,(2分)
又a6=a1+5d=13.(3分)
解得a1=3,d=2,(5分)
因此{an}的通项公式是:an=2n+1,(n=1,2,3,).(6分)
(Ⅱ)由(Ⅰ)知bn=
| 2 |
| an•an+1 |
| 2 |
| (2n+1)(2n+3) |
=
| (2n+3)-(2n+1) |
| (2n+1)(2n+3) |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
所以Tn=b1+b2+b3++bn-2+bn-1+bn
=(
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n-3 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 3 |
| 1 |
| 2n+3 |
| 2n |
| 3(2n+3) |
点评:本题主要考查等差数列通项公式和构造数列裂项法求和,是数列中常考的问题.
练习册系列答案
相关题目