题目内容
已知f(x)=sin
(x∈Z),则f(1)+f(2)+…+f(2012)=______.
| πx |
| 4 |
∵f(x)=sin
(x∈Z),
∴f(1)+f(2)+…+f(2012)
=251×(sin
+sin
+sin
+sinπ+sin
+sin
+sin
+sin2π)+sin
+sin
+sin
+sinπ
=251×0+
+1+
+0
=1+
.
故答案为:1+
.
| πx |
| 4 |
∴f(1)+f(2)+…+f(2012)
=251×(sin
| π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
| 5π |
| 4 |
| 3π |
| 2 |
| 7π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
=251×0+
| ||
| 2 |
| ||
| 2 |
=1+
| 2 |
故答案为:1+
| 2 |
练习册系列答案
相关题目
已知f(x)=sin(2x-
)-2m在x∈[0,
]上有两个零点,则m的取值范围为( )
| π |
| 6 |
| π |
| 2 |
A、(
| ||||
B、[
| ||||
C、[
| ||||
D、(
|
已知f(x)=sin(x+
),g(x)=cos(x-
),则下列结论中正确的是( )
| π |
| 2 |
| π |
| 2 |
| A、函数y=f(x)•g(x)的周期为2 | ||
| B、函数y=f(x)•g(x)的最大值为1 | ||
C、将f(x)的图象向左平移
| ||
D、将f(x)的图象向右平移
|