题目内容

已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为 ________.

(-2,
分析:知原函数在R上单调递增,且为奇函数,由f(mx-2)+f(x)<0恒成立得mx-2<-x?xm+x-2<0,对所有m∈[-2,2]恒成立,然后构造函数f(m)=xm+x-2,利用该函数的单调性可解得x的范围.
解答:易知原函数在R上单调递增,且为奇函数,故f(mx-2)+f(x)<0?f(mx-2)<-f(x)=f(-x),此时应有mx-2<-x?xm+x-2<0,对所有m∈[-2,2]恒成立,令f(m)=xm+x-2,此时只需即可,解之得-2<x<
故答案为:(-2,
点评:本题考查了函数的单调性与奇偶性的综合应用,在解决不等式恒成立问题时注意变换主元的方法,是个中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网