题目内容

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,三角形VAB为等边三角形,AC⊥BC且 AC=BC= ,O、M分别为AB和VA的中点.

(1)求证:VB∥平面MOC;
(2)求直线MC与平面VAB所成角.

【答案】
(1)证明:∵O,M分别为AB,VA的中点,

∴VB∥OM,

又VB平面MOC,OM平面MOC,

∴VB∥平面MOC


(2)解:由题意,CO⊥AB,

∵平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,

∴CO⊥平面VAB,

∴∠CMO是直线MC与平面VAB所成角.

∵AC⊥BC且AC=BC=

∴CO= AB=1,

∵MO=1,

∴∠CMO=45°,

∴直线MC与平面VAB所成角是45°


【解析】(1)由中位线定理得VB∥OM,故而VB∥平面MOC;(2)证明∠CMO是直线MC与平面VAB所成角,即可得出结论.
【考点精析】通过灵活运用直线与平面平行的判定和空间角的异面直线所成的角,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网