题目内容
(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知
,求cos(α+β).
并作出角α、β与-β,使角α的始边为Ox,
交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2,
终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.
则P1(1,0),P2(cosα,sinα)
P3(cos(α+β),sin(α+β)),
P4(cos(-β),sin(-β))
由P1P3=P2P4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ;(4分)
②由①易得cos(
sin(α+β)=cos[
=cos(
=sinαcosβ+cosαsinβ;(6分)
(Ⅱ)∵α∈(π,
∴sinα=-
∵β∈(
∴cosβ=-
cos(α+β)=cosαcosβ-sinαsinβ
=(-
=
分析:(I)①建立单位圆,在单位圆中作出角,找出相应的单位圆上的点的坐标,由两点间距离公式建立方程化简整理既得;②由诱导公式cos[
(II)
点评:本小题主要考查两角和的正、余弦公式、诱导公式、同角三角函数间的关系等基础知识及运算能力.
练习册系列答案
相关题目