题目内容
A.-2f′(x0) B.2f′(x0) C.-f′(x0) D.f′(x0)
B?
解析:
= ×2?
=2f′(x0),选B项.
已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是
A.0是f(x)的极大值,也是g(x)的极大值
B.0是f(x)的极小值,也是g(x)的极小值
C.0是f(x)的极大值,但不是g(x)的极值
D.0是f(x)的极小值,但不是g(x)的极值
0是f(x)的极大值,也是g(x)的极大值
0是f(x)的极小值,也是g(x)的极小值
0是f(x)的极大值,但不是g(x)的极值
0是f(x)的极小值,但不是g(x)的极值
已知f(x)=ax-lnx,a∈R.
(Ⅰ)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在x=1处有极值,求f(x)的单调递增区间;
(Ⅲ)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.