题目内容
【题目】设函数
,其中
.
(Ⅰ)当
时,求函数
的极值;
(Ⅱ)当
时,证明:函数
不可能存在两个零点.
【答案】(1)
存在极小值
,
不存在极大值.
(2)证明见解析.
【解析】分析:(Ⅰ)由题意得
,因为
,所以
,进而得出函数的单调性,求解函数的极值;
(Ⅱ)由方程
,得
,由
,得
,得出函数的单调性与极值,即可判定函数
至多在区间
存在一个零点,得出结论.
详解:(Ⅰ)解:求导,得
,
因为
,所以
,
所以当
时,
,函数
为减函数;
当
时,
,函数
为增函数.
故当
时,
存在极小值
,
不存在极大值.
(Ⅱ)证明:解方程
,得
.
由
,得
.
随着
的变化,
与
的变化情况如下表:
|
| 1 |
|
|
|
| + | 0 | - | 0 | + |
|
| 极大值 |
| 极小值 |
|
所以函数
在
,
上单调递增,在
上单调递减.
又因为
,
所以函数
至多在区间
存在一个零点;
所以,当
时函数
不可能存在两个零点.
练习册系列答案
相关题目
【题目】某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:
序号 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
经济总量 | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,记序号为
,请直接写出
与
的关系式;
(2)利用所给数据求经济总量
与年份
之间的回归直线方程
;
(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.
附:对于一组数据
,
其回归直线
的斜率和截距的最小二乘估计分别为:
,
.