题目内容
在△ABC中,内角A,B,C的对边长分别为a,b,c,且满足A+C=3B,cos(B+C)=-
.
(Ⅰ)求sinC的值;
(Ⅱ)若a=5,求△ABC的面积.
| 3 |
| 5 |
(Ⅰ)求sinC的值;
(Ⅱ)若a=5,求△ABC的面积.
(Ⅰ)由A+C=π-B=3B?B=
,---------------(1分)
所以cos(B+C)=cos(
+C)=-
,--------------(2分)
因为sin(B+C)=sin(
+C)=
=
,-------------(4分)
所以sinC=sin[(
+C)-
]=sin(
+C)cos
-cos(
+C)sin
=
×
+
×
=
.-----(7分)
(Ⅱ)由已知得sinA=sin(B+C)=
=
,-------------(8分)
因为a=5 , B=
, sinC=
,
所以由正弦定理
=
=
得
=
=
=
,
解得b=
, c=
.-----------------(12分)
所以△ABC的面积S=
absinC=
×5×
×
=
.----------(14分)
| π |
| 4 |
所以cos(B+C)=cos(
| π |
| 4 |
| 3 |
| 5 |
因为sin(B+C)=sin(
| π |
| 4 |
1-cos2(
|
| 4 |
| 5 |
所以sinC=sin[(
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
7
| ||
| 10 |
(Ⅱ)由已知得sinA=sin(B+C)=
| 1-cos2(B+C) |
| 4 |
| 5 |
因为a=5 , B=
| π |
| 4 |
7
| ||
| 10 |
所以由正弦定理
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| b | ||||
|
| c | ||||
|
| 5 | ||
|
| 25 |
| 4 |
解得b=
25
| ||
| 8 |
35
| ||
| 8 |
所以△ABC的面积S=
| 1 |
| 2 |
| 1 |
| 2 |
25
| ||
| 8 |
7
| ||
| 10 |
| 175 |
| 16 |
练习册系列答案
相关题目