题目内容
【题目】在锐角△ABC中,角A,B,C的对边分别为a,b,c,满足
=
.
(1)求角A的大小;
(2)若a=
,△ABC的面积S△ABC=3
,求b+c的值,;
(3)若函数f(x)=2sinxcos(x+
),求f(B)的取值范围.
【答案】
(1)解:锐角△ABC中,角A,B,C的对边分别为a,b,c,满足
=
,
∴
=
,
整理,得bc=b2+c2﹣a2,
∴cosA=
=
=
,
∴A=
.
(2)解:∵a=
,△ABC的面积S△ABC=3
,A=
,
∴S△ABC=
=3
,解得bc=12,
cosA=
=
=
,解得b2+c2=25,
∴(b+c)2=b2+c2+2bc=25+24=49,
∴b+c=7
(3)解:∵f(x)=2sinxcos(x+
)
=2sinx(cosxcos
﹣sinxsin
)
=
sinxcosx﹣sin2x
=
sin2x﹣ ![]()
=
sin2x+
cos2x﹣ ![]()
=cos
sin2x+sin
cos2x﹣ ![]()
=sin(2x+
)﹣
,
∵A=
,∴锐角△ABC中,B∈(0,
),∴2B+
∈(
,
),
f(B)=sin(2B+
)﹣
,
当2B+
=
时,f(B)max=1﹣
=
,
当2B+
=
时,f(B)min=﹣
﹣
=﹣
﹣
.
∴f(B)的取值范围是(﹣
,
)
【解析】(1)利用余弦定理推导出bc=b2+c2﹣a2,从而求出cosA=
,进而能求出A.(2)由S△ABC=
=3
,得bc=12,由余弦定理求出b2+c2=25,从而求出(b+c)2,进而求出b+c的值.(3)由f(x)=2sinxcos(x+
)=sin(2x+
)﹣
,A=
,得2B+
∈(
,
),由此能求出f(B)=sin(2B+
)﹣
的取值范围.