题目内容
设向量| m |
| n |
| 3 |
(1)若|
| m |
| n |
| 5 |
(2)设f(x)=(
| m |
| n |
| n |
分析:(1)通过|
-
|=
建立关于x的方程,即可求得x的值.(
2)利用向量的数量积的坐标运算与两角和的正弦公式,得f(x)得解析式,然后结合x∈(0,π)的函数的值域.
| m |
| n |
| 5 |
2)利用向量的数量积的坐标运算与两角和的正弦公式,得f(x)得解析式,然后结合x∈(0,π)的函数的值域.
解答:解:(1)∵
-
=(cosx-1, sinx-
)
由|
-
|=
得cos2x-2cosx+1+sin2x-2
sinx+3=5
整理得cosx=-
sinx
显然cosx≠0∴tanx=-
∵x∈(0,π),∴x=
(2)∵
+
=(cosx+1, sinx+
),
∴f(x)=(
+
)•
=(cosx+1, sinx+
)•(1,
)=cosx+1+
sinx+3
=2(
sinx+
cosx)+4=2sin(x+
)+4
∵0<x<π∴
<x+
<
∴-
<sin(x+
)≤1?-1<2sin(x+
)≤2
∴3<2sin(x+
)+4≤6
即函数f(x)的值域为(3,6].
| m |
| n |
| 3 |
由|
| m |
| n |
| 5 |
| 3 |
整理得cosx=-
| 3 |
显然cosx≠0∴tanx=-
| ||
| 3 |
∵x∈(0,π),∴x=
| 5π |
| 6 |
(2)∵
| m |
| n |
| 3 |
∴f(x)=(
| m |
| n |
| n |
| 3 |
| 3 |
| 3 |
=2(
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∵0<x<π∴
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴-
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
∴3<2sin(x+
| π |
| 6 |
即函数f(x)的值域为(3,6].
点评:本题考查了正弦函数的定义域和值域,以及平面向量数量积的坐标运算,是个典型的向量与三角结合的问题,是个中档题.
练习册系列答案
相关题目