题目内容

(1)已知椭圆的焦点在x轴上,且a=4,b=1,求椭圆的标准方程;
(2)已知双曲线的顶点在x轴上,两顶点间的距离是8,e=,求双曲线的标准方程.
【答案】分析:(1)先根据题意a=4,b=1,焦点在x轴上,代入标准方程得到答案.
(2)先由两顶点间的距离确定a值,由离心率及a、b、c的关系求出b的值.
解答:解:(1)根据题意知a=4,b=1,
焦点在x轴上,
∴a2=16  b2=1

故椭圆的标准方程为:
(2)已知双曲线中心在原点,顶点在x轴上,两顶点间的距离是8,
则焦点在x轴上,且a=4,
e=,即c:a=5:4,
解得c=5,b=3,
则双曲线的标准方程是
点评:本题主要考查椭圆的标准方程、求双曲线标准方程.要注意双曲线与椭圆a、b、c三者关系的不同,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网