题目内容
如图,在三棱柱
中,
平面![]()
,
,
,
分别是
,
的中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
证明:(Ⅰ)取
的中点
,连结
,交
于点
,可知
为
中点,
连结
,易知四边形
为平行四边形,
所以
∥
.
又
平面
,
平面
,
所以
∥平面
.
证明:(Ⅱ)因为
,且
是
的中点,
所以
.
因为
平面
,所以
.
所以
平面
.
又
∥
,所以
平面
.
又
平面
,
所以平面
平面
.
解:(Ⅲ)如图建立空间直角坐标系
,
则
,
,
,
.
|
练习册系列答案
相关题目
2014年一轮又一轮的寒潮席卷全国.某商场为了了解某品牌羽绒服的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气
温,数据如下表:
月平均气温x(℃) | 17 | 13 | 8 | 2 |
月销售量y(件) | 24 | 33 | 40 | 55 |
由表中数据算出线性回归方程=bx+a中的b≈-2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月羽绒服的销售量约为________件.