题目内容

已知椭圆C:的离心率为

直线:y=x+2与原点为圆心,以椭圆C的短轴长为直

径的圆相切.

 (Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

 

 

【答案】

(Ⅰ).

(Ⅱ)存在满足题意的点(m,0)且实数的取值范围为:.

【解析】

试题分析:(Ⅰ)利用离心率公式,得到,利用直线与圆相切,圆心到直线的距离等于半径,得到,得到,从而得到椭圆C的方程.(Ⅱ)通过假设的方程为),与椭圆方程联立,应用韦达定理确定交点坐标关系,利用“向量法”得到. 将表示成应用导数或均值定理确定的范围.

试题解析:(Ⅰ),       2分

∵直线:y=x+2与圆x2+y2=b2相切,

,解得,则a2=4.     4分

故所求椭圆C的方程为.     5分

(Ⅱ)在轴上存在点,使得是以GH为底边的等腰三角形.  6分

理由如下:

的方程为),

因为直线与椭圆C有两个交点,所以

所以,又因为,所以.

,则.   7分

.

              =

.

由于等腰三角形中线与底边互相垂直,则.      8分

所以.

.

因为,所以.所以.

,当时,

所以函数上单调递增,所以

,         10分

 所以    11分

(若学生用基本不等式求解无证明扣1分)

又因为,所以.   所以,.

故存在满足题意的点(m,0)且实数的取值范围为:.     12分

考点:1、椭圆的几何性质,2、直线与椭圆的位置关系,3、平面向量的坐标运算.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网