题目内容
已知函数f(x)=x2-2x+4,数列{an}是公差为d的等差数列,若a1=f(d-1),a3=f(d+1)
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,求证:
+
+…+
≥
.
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,求证:
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 3 |
(1)a1=f(d-1)=d2-4d+7,a3=f(d+1)=d2+3,
又由a3=a1+2d,可得d=2,所以a1=3,an=2n+1
(2)证明:由题意,Sn=
=n(n+2),
所以,
=
=
(
-
)
所以,
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(
-
-
)≥
(
-
-
)=
又由a3=a1+2d,可得d=2,所以a1=3,an=2n+1
(2)证明:由题意,Sn=
| n(3+2n+1) |
| 2 |
所以,
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
所以,
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 1+1 |
| 1 |
| 1+2 |
| 1 |
| 3 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|