题目内容

已知数列{an}中,a1=
1
3
,an•an-1=an-1-an(n≥2,n∈N*),数列{bn}满足bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
1
nbn
}
的前n项和为Tn,证明Tn
3
4
-
1
n+2
(I)当n=1时,b1=
1
a1
=3

当n≥2时,bn-bn-1=
1
an
-
1
an-1
=
an-1-an
anan-1
=1

∴数列{bn}是首项为3,公差为1的等差数列,
∴通项公式为bn=n+2;(5分)
(II)∵
1
nbn
=
1
n(n+2)

Tn=
1
1•3
+
1
2•4
+
1
3•5
++
1
n(n+2)

=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)++(
1
n
-
1
n+2
)]

=
1
2
[
3
2
-(
1
n+1
+
1
n+2
)]

=
1
2
[
3
2
-
2n+3
(n+1)(n+2)
]

2n+3
(n+1)(n+2)
2n+2
(n+1)(n+2)
=
2
n+2

-
2n+2
(n+1)(n+2)
<-
2
n+2

1
2
[
3
2
-
2n+3
(n+1)(n+2)
1
2
[
3
2
-
2
n+2
]=
3
4
-
1
n+2

Tn
3
4
-
1
n+2
.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网