题目内容
【题目】(2015·新课标I卷)如图,四边形ABCD为菱形,∠ABC=120°,E , F是平面ABCD同一侧的两点,BE⊥平面ABCD , DF⊥平面ABCD , BE=2DF , AE⊥EC.![]()
(1)证明:平面AEC⊥平面AFC
(2)求直线AE与直线CF所成角的余弦值
【答案】
(1)
见解析
(2)
![]()
【解析】(Ⅰ)连接BD , 设BD∩AC=G , 连接EG , FG , EF , 在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得AG=GC=![]()
由BE⊥平面ABCD , AB=BC可知,AE=EC ,
又∵AE⊥EC , ∴EG=
,EG⊥AC ,
在Rt△EBG中,可得BE=
,故DF=
.
在Rt△FDG中,可得FG=
.
在直角梯形BDFE中,由BD=2,BE=
,DF=
可得EF=
,∴EG2+EG2=EF2 , ∴EG⊥FG ,
∵AC∩FG=G , ∴EG⊥平面AFC ,
∵EG
面AEC , ∴平面AFC⊥平面AEC. ![]()
(Ⅱ)如图,以G为坐标原点,分别以
的方向为x轴,y轴正方向,
为单位拟长度,建立空间直角坐标系G-xyz。由(Ⅰ)可得
A(0,-
),E(1,0,
),F(-1,0,
),C(0,
,0), ∴
=(1,
,
),
=(-1,-
,
).
故
, 所以直线AE与CF所成的角的余弦值为
。
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数
在某一周期内的图像时,列表并填入的部分数据如下表:
|
|
|
|
|
|
| 0 |
|
|
|
|
| 0 | 1 | 0 |
| 0 |
| 0 |
| 0 |
| 0 |
(1)请写出上表的
及函数
的解析式;
(2)将函数
的图像向右平移
个单位,再将所得图像上各点的横坐标缩小为原来的
,纵坐标不变,得到函数
的图像,求
的解析式及
的单调递增区间;
(3)在(2)的条件下,若
在
上恰有奇数个零点,求实数
与零点个数
的值.