题目内容
9.函数y=$\sqrt{{x}^{2}-2x}$(x<-1)的反函数是y=1-$\sqrt{1+{x}^{2}}$(x>$\sqrt{3}$).分析 由y=$\sqrt{{x}^{2}-2x}$(x<-1),解得x=1-$\sqrt{1+{y}^{2}}$(y>$\sqrt{3}$),把x与y互换即可得出.
解答 解:由y=$\sqrt{{x}^{2}-2x}$(x<-1),解得x=1-$\sqrt{1+{y}^{2}}$(y>$\sqrt{3}$),把x与y互换可得y=1-$\sqrt{1+{x}^{2}}$(x>$\sqrt{3}$).
∴函数y=$\sqrt{{x}^{2}-2x}$(x<-1)的反函数是y=1-$\sqrt{1+{x}^{2}}$(x>$\sqrt{3}$).
故答案为y=1-$\sqrt{1+{x}^{2}}$(x>$\sqrt{3}$).
点评 本题考查了反函数的求法,属于基础题.
练习册系列答案
相关题目
19.下列有关命题的说法正确的是( )
| A. | 命题:若x=y,则sinx=siny的逆否命题为真命题 | |
| B. | x>2是x2-3x+2>0的必要不充分条件 | |
| C. | 命题:若x2=1,则x=1的否命题为“若x2=1,则x≠1” | |
| D. | 命题:?x∈R使得x2+x+1<0的否定为:?x∈R均有x2+x+1<0 |
4.下列函数中,y的最小值为4的是( )
| A. | y=x+$\frac{4}{x}$ | B. | y=$\frac{2(x+3)}{\sqrt{{x}^{2}+2}}$ | ||
| C. | y=sin x+$\frac{4}{sinx}$(0<x<π) | D. | y=ex+e-x |
14.将函数$y=sin(x+\frac{π}{3})$的图象向x轴正方向平移$\frac{π}{6}$个单位后,得到的图象解析式是( )
| A. | $y=sin(x+\frac{π}{6})$ | B. | $y=sin(x-\frac{π}{6})$ | C. | $y=sin(x-\frac{2π}{3})$ | D. | $y=sin(x+\frac{2π}{3})$ |
1.已知双曲线$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的离心率为$\frac{{\sqrt{5}}}{2}$,P是该双曲线上的点,P在该双曲线两渐近线上的射影分别是A,B,则|PA|•|PB|的值为( )
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |