题目内容
已知un=an+an-1b+an-2b2+…+abn-1+bn(n∈N*,a>0,b>0).(Ⅰ)当a=b时,求数列{un}的前n项和Sn;
(Ⅱ)求
| lim |
| n→∞ |
| un |
| un-1 |
分析:(Ⅰ)当a=b时,求出un=(n+1)an.再应用数列的前n项和错位相减,求数列{un}的前n项和Sn;
(Ⅱ)求出
的表达式,对a,b的大小分类讨论,求出数列的极限.
(Ⅱ)求出
| un |
| un-1 |
解答:解:(Ⅰ)当a=b时,un=(n+1)an.这时数列{un}的前n项和Sn=2a+3a2+4a3++nan-1+(n+1)an. ①
①式两边同乘以a,得aSn=2a2+3a3+4a4++nan+(n+1)an+1②
①式减去②式,得(1-a)Sn=2a+a2+a3++an-(n+1)an+1
若a≠1,(1-a)Sn=
-(n+1)an+1+a,
Sn=
+
=
若a=1,Sn=2+3++n+(n+1)=
.
(Ⅱ)由(Ⅰ),当a=b时,un=(n+1)an,
则
=
=
=a.
当a≠b时,un=an+an-1b++abn-1+bn=an[1+
+(
)2+(
)n]=an
=
(an+1-bn+1)
此时,
=
.
若a>b>0,
=
=
=a.
若b>a>0,
=
=b.
①式两边同乘以a,得aSn=2a2+3a3+4a4++nan+(n+1)an+1②
①式减去②式,得(1-a)Sn=2a+a2+a3++an-(n+1)an+1
若a≠1,(1-a)Sn=
| a(1-an) |
| 1-a |
Sn=
| a(1-an) |
| (1-a)2 |
| a-(n+1)an+1 |
| 1-a |
| (n+1)an+2-(n+2)an+1-a2+2a |
| (1-a)2 |
若a=1,Sn=2+3++n+(n+1)=
| n(n+3) |
| 2 |
(Ⅱ)由(Ⅰ),当a=b时,un=(n+1)an,
则
| lim |
| n→∞ |
| un |
| un-1 |
| lim |
| n→∞ |
| (n+1)an |
| nan-1 |
| lim |
| n→∞ |
| a(n+1) |
| n |
当a≠b时,un=an+an-1b++abn-1+bn=an[1+
| b |
| a |
| b |
| a |
| b |
| a |
1-(
| ||
1-
|
| 1 |
| a-b |
此时,
| un |
| un-1 |
| an+1-bn+1 |
| an-bn |
若a>b>0,
| lim |
| n→∞ |
| un |
| un-1 |
| lim |
| n→∞ |
| an+1-bn+1 |
| an-bn |
| lim |
| n→∞ |
a-b(
| ||
1-(
|
若b>a>0,
| lim |
| n→∞ |
| un |
| un-1 |
| lim |
| n→∞ |
a(
| ||
(
|
点评:本题是中档题,考查数列求和的重要方法:错位相减法,分类讨论的思想,极限的求法,高考常考题型.
练习册系列答案
相关题目