题目内容
(I)已知两组技工在单位时间内加工的合格零件数的平均数都为10,分别求出m,n的值;
(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差
| S | 2 甲 |
| S | 2 乙 |
(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“待整改”,求该车间“待整改”的概率.(注:方差,s2=
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |
. |
| x |
分析:题干错误:若两人加工的合格零件数之和大于17,则称该车间“待整改”,
应该是:若两人加工的合格零件数之和不超过17,则称该车间“待整改”,
应该是:若两人加工的合格零件数之和不超过17,则称该车间“待整改”,
解答:解:(I)由题意可得
=
(7+8+10+12+10+m)=10,解得 m=3.
再由
=
(n+9+10+11+12)=10,解得 n=8.
(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差,
=
[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2,
=
[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,
并由
=
,S甲2<S乙2,可得两组的整体水平相当,乙组的发挥更稳定一些.
(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为(a,b),
则所有的(a,b)有 (7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、
(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、
(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,
而满足a+b≤17时,该车间“待整改”,含有(7,8)、(7,9)、(7,10)、(8,8)、(8,9)这5个基本事件,
故该车间“待整改”的概率为
=
.
. |
| x甲 |
| 1 |
| 5 |
再由
. |
| x乙 |
| 1 |
| 5 |
(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差,
| S | 2 甲 |
| 1 |
| 5 |
| S | 2 乙 |
| 1 |
| 5 |
并由
. |
| x甲 |
. |
| x乙 |
(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为(a,b),
则所有的(a,b)有 (7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、
(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、
(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,
而满足a+b≤17时,该车间“待整改”,含有(7,8)、(7,9)、(7,10)、(8,8)、(8,9)这5个基本事件,
故该车间“待整改”的概率为
| 5 |
| 25 |
| 1 |
| 5 |
点评:本题主要考查方差的定义和求法,古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于中档题.
练习册系列答案
相关题目
某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
(I)分别求出甲、乙两组技工在单位时间内完成合成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
| 1号 | 2号 | 3号 | 4号 | 5号 | |
| 甲组 | 4 | 5 | 7 | 9 | 10 |
| 乙组 | 5 | 6 | 7 | 8 | 9 |
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
(I)分别求出甲、乙两组技工在单位时间内完成合成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
| 1号 | 2号 | 3号 | 4号 | 5号 | |
| 甲组 | 4 | 5 | 7 | 9 | 10 |
| 乙组 | 5 | 6 | 7 | 8 | 9 |
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
(I)分别求出甲、乙两组技工在单位时间内完成合成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
| 1号 | 2号 | 3号 | 4号 | 5号 | |
| 甲组 | 4 | 5 | 7 | 9 | 10 |
| 乙组 | 5 | 6 | 7 | 8 | 9 |
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.