题目内容
已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=
,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列
(Ⅲ)设Sn为{an}的前n项和,证明
+
+…+
+
≤n-
(n∈N*)
| 3+(-1)n-1 |
| 2 |
(Ⅰ)求a2,a3的值
(Ⅱ)设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列
(Ⅲ)设Sn为{an}的前n项和,证明
| S1 |
| a1 |
| S2 |
| a2 |
| S2n-1 |
| a2n-1 |
| S2n |
| a2n |
| 1 |
| 3 |
(Ⅰ)由bn=
,(n∈N*)可得bn=
又bn+1an+bnan+1=(-2)n+1,
当n=1时,a1+2a2=-1,可得由a1=2,a2=-
;
当n=2时,2a2+a3=5可得a3=8;
(Ⅱ)证明:对任意n∈N*,
a2n-1+2a2n=-22n-1+1…①
2a2n+a2n+1=22n+1…②
②-①,得a2n+1-a2n-1=3×22n-1,即:cn=3×22n-1,于是
=4
所以{cn}是等比数列.
(Ⅲ)证明:
a1=2,由(Ⅱ)知,当k∈N*且k≥2时,
a2k-1=a1+(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k-1-a2k-3)
=2+3(2+23+25+…+22k-3)=2+3×
=22k-1,
故对任意的k∈N*,a2k-1=22k-1.
由①得22k-1+2a2k=-22k-1+1,所以a2k=
-22k-1k∈N*,
因此,S2k=(a1+a2)+(a3+a4)+…+(a2k-1+a2k) =
于是,S2k-1=S2k-a2k=
+22k-1.
故
+
=
+
=
+
=1-
-
所以,对任意的n∈N*,
+
+…+
+
=(
+
)+…+(
+
)
=(1-
-
)+(1-
-
)+…+(1-
-
)
=n-(
+
)-(
+
)-…-(
+
)
=n-(
+
+
+
+…+
+
)
≤n-(
)=n-
(n∈N*)
| 3+(-1)n-1 |
| 2 |
|
又bn+1an+bnan+1=(-2)n+1,
当n=1时,a1+2a2=-1,可得由a1=2,a2=-
| 3 |
| 2 |
当n=2时,2a2+a3=5可得a3=8;
(Ⅱ)证明:对任意n∈N*,
a2n-1+2a2n=-22n-1+1…①
2a2n+a2n+1=22n+1…②
②-①,得a2n+1-a2n-1=3×22n-1,即:cn=3×22n-1,于是
| Cn+1 |
| Cn |
所以{cn}是等比数列.
(Ⅲ)证明:
a1=2,由(Ⅱ)知,当k∈N*且k≥2时,
a2k-1=a1+(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k-1-a2k-3)
=2+3(2+23+25+…+22k-3)=2+3×
| 2(1-4k-1) |
| 2=4 |
故对任意的k∈N*,a2k-1=22k-1.
由①得22k-1+2a2k=-22k-1+1,所以a2k=
| 1 |
| 2 |
因此,S2k=(a1+a2)+(a3+a4)+…+(a2k-1+a2k) =
| k |
| 2 |
于是,S2k-1=S2k-a2k=
| k-1 |
| 2 |
故
| S2k-1 |
| a2k-1 |
| S2k |
| a2k |
| ||
| 22k-1 |
| ||
|
| k-1+22k |
| 22k-1 |
| k |
| 1-22k |
=1-
| 1 |
| 4k |
| k |
| 4k(4k-1) |
所以,对任意的n∈N*,
| S1 |
| a1 |
| S2 |
| a2 |
| S2n-1 |
| a2n-1 |
| S2n |
| a2n |
| S1 |
| a1 |
| S2 |
| a2 |
| S2n-1 |
| a2n-1 |
| S2n |
| a2n |
=(1-
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 42 |
| 2 |
| 42(42-1) |
| 1 |
| 4n |
| n |
| 4n(4n-1) |
=n-(
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 42 |
| 2 |
| 42(42-1) |
| 1 |
| 4n |
| n |
| 4n(4n-1) |
=n-(
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 42 |
| 2 |
| 42(42-1) |
| 1 |
| 4n |
| n |
| 4n(4n-1) |
≤n-(
| ||||
1-
|
| 1 |
| 3 |
练习册系列答案
相关题目