题目内容
已知数列{an}与{bn}有如下关系:a1=2,an+1=
(an+
),bn=
.
(1)求数列{bn}的通项公式.
(2)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn<n+
.
| 1 |
| 2 |
| 1 |
| an |
| an+1 |
| an-1 |
(1)求数列{bn}的通项公式.
(2)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn<n+
| 4 |
| 3 |
分析:(1)根据bn=
,an+1=
(an+
),可得bn+1=
=(
)2=
>0,迭代可得数列{bn}的通项公式;
(2)利用当n≥2时,an+1-1=
≤
(an-1),可得a3-1≤
(a2-1),a4-1≤
(a3-1),…,an-1≤
(an-1-1),以上式子累和得Sn-a1-a2-(n-2)≤
[Sn-1-a1-(n-2)],进而利用放缩法可证Sn<n+
.
| an+1 |
| an-1 |
| 1 |
| 2 |
| 1 |
| an |
| an+1+1 |
| an+1-1 |
| an+1 |
| an-1 |
| b | 2 n |
(2)利用当n≥2时,an+1-1=
| an-1 |
| 32n-1+1 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 10 |
| 4 |
| 3 |
解答:(1)解:∵bn=
.
∴b1=
=3,
∵an+1=
(an+
),
∴bn+1=
=(
)2=
>0
∴bn=
=…=32n-1
(2)证明:当n≥2时,an+1-1=
≤
(an-1)
(当且仅当n=2时取等号)且a2=
(a1+
)=
故a3-1≤
(a2-1),a4-1≤
(a3-1),…,an-1≤
(an-1-1)
以上式子累和得Sn-a1-a2-(n-2)≤
[Sn-1-a1-(n-2)]
∴10[Sn-a1-a2-(n-2)]≤Sn-1-a1-(n-2)
∴9Sn≤
+9n-
∴Sn≤
+n-
<
+n-
=
+n<
+n
∴Sn<n+
.得证
| an+1 |
| an-1 |
∴b1=
| a1+1 |
| a1-1 |
∵an+1=
| 1 |
| 2 |
| 1 |
| an |
∴bn+1=
| an+1+1 |
| an+1-1 |
| an+1 |
| an-1 |
| b | 2 n |
∴bn=
| b | 2 n-1 |
(2)证明:当n≥2时,an+1-1=
| an-1 |
| 32n-1+1 |
| 1 |
| 10 |
(当且仅当n=2时取等号)且a2=
| 1 |
| 2 |
| 1 |
| a1 |
| 5 |
| 4 |
故a3-1≤
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 10 |
以上式子累和得Sn-a1-a2-(n-2)≤
| 1 |
| 10 |
∴10[Sn-a1-a2-(n-2)]≤Sn-1-a1-(n-2)
∴9Sn≤
| 25 |
| 2 |
| 32n-1+1 |
| 32n-1-1 |
∴Sn≤
| 25 |
| 18 |
| 32n-1+1 |
| 9(32n-1-1) |
| 25 |
| 18 |
| 1 |
| 9 |
| 23 |
| 18 |
| 24 |
| 18 |
∴Sn<n+
| 4 |
| 3 |
点评:本题以数列递推式为载体,考查数列的通项公式,考查不等式的证明,考查放缩法的运用,有难度.
练习册系列答案
相关题目