题目内容
已知a, b都是正数,并且a¹b,求证:a5 + b5 > a2b3 + a3b2
同解析。
(a5 + b5 ) - (a2b3 + a3b2) =" (" a5-a3b2) + (b5-a2b3 )
= a3 (a2-b2 ) -b3 (a2-b2)
= (a2-b2 ) (a3-b3)
= (a + b)(a-b)2(a2 + ab + b2)
∵a, b都是正数,∴a + b, a2 + ab + b2 > 0
又∵a¹b,∴(a-b)2 > 0 ∴(a + b)(a-b)2(a2 + ab + b2) > 0
即:a5 + b5 > a2b3 + a3b2
(a5 + b5 ) - (a2b3 + a3b2) =" (" a5-a3b2) + (b5-a2b3 )
= a3 (a2-b2 ) -b3 (a2-b2)
= (a2-b2 ) (a3-b3)
= (a + b)(a-b)2(a2 + ab + b2)
∵a, b都是正数,∴a + b, a2 + ab + b2 > 0
又∵a¹b,∴(a-b)2 > 0 ∴(a + b)(a-b)2(a2 + ab + b2) > 0
即:a5 + b5 > a2b3 + a3b2
练习册系列答案
相关题目