题目内容
【题目】关于函数
,给出以下四个命题,其中真命题的序号是_______.
①
时,
单调递减且没有最值;
②方程
一定有解;
③如果方程
有解,则解的个数一定是偶数;
④
是偶函数且有最小值.
【答案】②④
【解析】
①将函数
表示为分段函数,结合分式型函数的单调性进行判断;②由函数
是偶函数,在
且
时,判定函数
与函数
在
时有唯一交点,同理得出,当
且
时,函数
与函数
在
时有交点,从而可得方程
有解;③求方程
的解,即可判断出命题③的正误;④利用偶函数的定义判定函数
为偶函数,再利用绝对值的性质得出
且
,即可判断出命题④的正误.
对于命题①,当
时,
.
当
时,
,则函数
在
上单调递增,此时,
,当
时,
,
当
时,
,则函数
在
上单调递减,
所以,当
时,函数
不单调且没有最值,命题①错误;
对于命题②,当
时,
,当
时,
,
当
时,构造函数
,
则函数
在
上单调递增,
当
时,
,当
时,
,
所以,函数
在
上有且只有一个零点,
即当
时,方程
在
上有解.
函数
的定义域为
,关于原点对称,
,则函数
为偶函数,
同理可知,当
时,方程
在
上有解.
所以,命题②正确;
对于命题③,当
时,令
,解得
,则命题③错误;
对于命题④,由②可知,函数
是偶函数,由绝对值的性质可知
且
,则函数
为偶函数且最小值为
,命题④正确.
因此,正确命题的序号为②④.
故答案为:②④.
练习册系列答案
相关题目