题目内容

a为何值时,三条直线l1:ax-3y-5=0,l2:3x+4y-2=0,l3:4x-2y-10=0不能构成三角形?
分析:三条不同的直线不能构成三角形时,三条直线中必有两条直线平行,再利用两直线平行的性质求出a.
解答:解:要使l1,l2,l2不能构成三角形,有三种可能:
①l1∥l2
a
3
=
-3
4
得a=-
9
4

②l1∥l3
a
4
=
-3
-4
得a=6
③l1,l2,l3相交于一点,即l1通过l2,l3的交点.
3x+4y-2=0
4x-2y-10=0
x=2
y=-1

即l2,l3的交点为(2,-1),即(2,-1)在l1上,
所以有:2a-3×(-1)-5=0,⇒a=1
故当a=-
9
4
,6,1时l1,l2,l3不能构成三角形.
点评:本题考查两直线平行的性质,当两直线平行时,斜率相等或都不存在,体现了分类讨论的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网