题目内容
19.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为10,5,4,则该三棱锥外接球的表面积为( )| A. | 141π | B. | 45π | C. | 3$\sqrt{5}$π | D. | 24π |
分析 三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,转化为对角线长,即可求解外接球的表面积.
解答 解:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
设长方体的三度为a,b,c由题意得:ab=20,ac=10,bc=8,
解得:a=5,b=4,c=2,
所以球的直径为:$\sqrt{25+16+4}$=3$\sqrt{5}$,
它的半径为$\frac{3\sqrt{5}}{2}$,
球的表面积为$4π•(\frac{3\sqrt{5}}{2})^{2}$=45π,
故选:B.
点评 本题是基础题,考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.
练习册系列答案
相关题目
3.
如图直角三角形ABC中,|CA|=|CB|,|AB|=3,点E、F分别在CA、CB上,且EF∥AB,AE=$\sqrt{2}$,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=( )
| A. | 3 | B. | -3 | C. | 0 | D. | -7 |
7.若直线2x+y-2$\sqrt{5}$=0过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{4}-{y}^{2}=1$ | B. | x2-$\frac{{y}^{2}}{4}=1$ | C. | $\frac{{x}^{2}}{10}-\frac{{y}^{2}}{5}=1$ | D. | $\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$ |
14.设集合S={x|x>-3},T={x|-6≤x≤1},则S∪T=( )
| A. | [-6,+∞) | B. | (-3,+∞) | C. | [-6,1] | D. | (-3,1] |
4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 锻练时间 | 男生 | 女生 | 合计 |
| 少于1小时 | 5 | 15 | 20 |
| 不少于1小时 | 20 | 10 | 30 |
| 合 计 | 25 | 25 | 50 |
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥K0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
11.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
9.若复数z满足z•(2-i)=1(i为虚数单位),则|z|=( )
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{1}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |