题目内容
已知数列{an},a1=
,若以a1,a2,…,an为系数的二次方程an-1x2-anx+1=0(n∈N*,n≥2)都有根α,β,且满足3α-αβ+3β=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和Sn.
| 5 | 6 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和Sn.
分析:(Ⅰ)将α+β=
,αβ=
代入3α-αβ+3β=1,得an=
an-1+
,故an-
=
(an-1-
),由此能求出数列{an}的通项公式.
(Ⅱ)由nan=n(
)n+
n,知Sn=
+
+
+
+…+
+
(1+2+3+…+n),令Tn=
+
+
+…+
.利用错位相减法能求出数列{bn}的前n项和Sn.
| an |
| an-1 |
| 1 |
| an-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
(Ⅱ)由nan=n(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| 4 |
| 34 |
| n |
| 3n |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
解答:解:(Ⅰ)∵将α+β=
,αβ=
代入3α-αβ+3β=1,
得an=
an-1+
,(2分)
∴an-
=
(an-1-
),
∴
=
为定值.又a1-
=
,
∴数列{an-
}是首项为
,公比为
的等比数列.(5分)
∴an-
=
×(
)n-1=(
)n,
∴an=(
)n+
.(6分)
(Ⅱ)∵nan=n(
)n+
n,
∴Sn=
+
+
+
+…+
+
(1+2+3+…+n),(7分)
令Tn=
+
+
+…+
.①
Tn=
+
+
+…+
②
①-②得,
Tn=
+
+
+
+…+
-
,
∴Tn=
-
,(11分)
∴Sn=
-
+
.(12分)
| an |
| an-1 |
| 1 |
| an-1 |
得an=
| 1 |
| 3 |
| 1 |
| 3 |
∴an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∴
an-
| ||
an-1-
|
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴数列{an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=(
| 1 |
| 3 |
| 1 |
| 2 |
(Ⅱ)∵nan=n(
| 1 |
| 3 |
| 1 |
| 2 |
∴Sn=
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| 4 |
| 34 |
| n |
| 3n |
| 1 |
| 2 |
令Tn=
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 2 |
| 33 |
| 3 |
| 34 |
| n |
| 3n+1 |
①-②得,
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
| n |
| 3n+1 |
∴Tn=
| 3 |
| 4 |
| 2n+3 |
| 4•3n |
∴Sn=
| 3 |
| 4 |
| 2n+3 |
| 4•3n |
| n(n+1) |
| 4 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和公式的求法,解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关题目