题目内容
14.已知Rt△ABC,∠C=90°,设AC=m,BC=n(1)若D为斜边AB的中点,求证:CD=$\frac{1}{2}$AB;
(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长度(用m,n表示)
分析 (1)以C为原点,CB为x轴,CA为y轴,建立平面直角坐标系,由引能证明CD=$\frac{1}{2}$AB.
(2)由已知得E($\frac{n}{4}$,$\frac{m}{4}$),直线AE:y=-$\frac{3m}{n}$x+m,由此求出F($\frac{n}{3}$,0),利用两点间距离公式能求出AF的长.
解答
证明:(1)以C为原点,CB为x轴,CA为y轴,建立平面直角坐标系,
则C(0,0),A(0,m),B(n,0),∴D($\frac{n}{2}$,$\frac{m}{2}$),
∴AB2=m2+n2,CD2=$\frac{{n}^{2}}{4}+\frac{{m}^{2}}{4}$=$\frac{A{B}^{2}}{4}$,
∴CD=$\frac{1}{2}$AB.
解:(2)∵E为CD的中点,∴E($\frac{n}{4}$,$\frac{m}{4}$),
∴直线AE:$\frac{y-m}{x}=\frac{\frac{m}{4}-m}{\frac{n}{4}}$,整理,得y=-$\frac{3m}{n}$x+m,
∵连接AE并延长交BC于F,∴F($\frac{n}{3}$,0)
∴AF=$\sqrt{(\frac{n}{3})^{2}+{m}^{2}}$=$\frac{\sqrt{9{m}^{2}+{n}^{2}}}{3}$.
点评 本题考查直角三角形中斜边上中线等于斜边长一半的证明,考查线段长的求法,是中档题,解题时要认真审题,合理建立平面直角坐标系是解题的关键.
练习册系列答案
相关题目
4.下列命题中,错误的是( )
| A. | 平行于同一个平面的两个平面平行 | |
| B. | 若直线a不平行于平面M,则直线a与平面M有公共点 | |
| C. | 已知直线a∥平面α,P∈α,则过点P且平行于直线a的直线只有一条,且在平面α内 | |
| D. | 若直线a∥平面M,则直线a与平面M内的所有直线平行 |