题目内容

14.已知Rt△ABC,∠C=90°,设AC=m,BC=n
(1)若D为斜边AB的中点,求证:CD=$\frac{1}{2}$AB;
(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长度(用m,n表示)

分析 (1)以C为原点,CB为x轴,CA为y轴,建立平面直角坐标系,由引能证明CD=$\frac{1}{2}$AB.
(2)由已知得E($\frac{n}{4}$,$\frac{m}{4}$),直线AE:y=-$\frac{3m}{n}$x+m,由此求出F($\frac{n}{3}$,0),利用两点间距离公式能求出AF的长.

解答 证明:(1)以C为原点,CB为x轴,CA为y轴,建立平面直角坐标系,
则C(0,0),A(0,m),B(n,0),∴D($\frac{n}{2}$,$\frac{m}{2}$),
∴AB2=m2+n2,CD2=$\frac{{n}^{2}}{4}+\frac{{m}^{2}}{4}$=$\frac{A{B}^{2}}{4}$,
∴CD=$\frac{1}{2}$AB.
解:(2)∵E为CD的中点,∴E($\frac{n}{4}$,$\frac{m}{4}$),
∴直线AE:$\frac{y-m}{x}=\frac{\frac{m}{4}-m}{\frac{n}{4}}$,整理,得y=-$\frac{3m}{n}$x+m,
∵连接AE并延长交BC于F,∴F($\frac{n}{3}$,0)
∴AF=$\sqrt{(\frac{n}{3})^{2}+{m}^{2}}$=$\frac{\sqrt{9{m}^{2}+{n}^{2}}}{3}$.

点评 本题考查直角三角形中斜边上中线等于斜边长一半的证明,考查线段长的求法,是中档题,解题时要认真审题,合理建立平面直角坐标系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网