题目内容

18. 如图,为空间四点.在中,.等边三角形为轴运动.

(Ⅰ)当平面平面时,求

(Ⅱ)当转动时,是否总有?证明你的结论.

 

解:(Ⅰ)取的中点,连结,因为是等边三角形,所以.当平面平面时,因为平面平面,所以平面,可知

由已知可得,在中,.

(Ⅱ)当为轴转动时,总有.

证明:

(ⅰ)当在平面内时,因为,所以都在线段的垂直平分线上,即.

(ⅱ)当不在平面内时,由(Ⅰ)知.又因,所以.

为相交直线,所以平面,由平面,得.

综上所述,总有.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网