题目内容
实数x,y满足1+cos2(2x+3y-1)=
,则xy的最小值是
.
| x2+y2+2(x+1)(1-y) |
| x-y+1 |
| 1 |
| 25 |
| 1 |
| 25 |
分析:利用配方法,我们可将1+cos2(2x+3y-1)=
转化为1+cos2(2x+3y-1)=(x-y+1)+
的形式,进而根据余弦函数的性质及基本不等式,我们可得(x-y+1)+
≥2,或(x-y+1)+
≤-2,且1≤1+cos2(2x+3y-1)≤2,则1+cos2(2x+3y-1)=(x-y+1)+
=2,进而x-y+1=1,2x+3y-1=kπ,(k∈Z),求出xy的表达式后,即可得到其最小值.
| x2+y2+2(x+1)(1-y) |
| x-y+1 |
| 1 |
| x-y+1 |
| 1 |
| x-y+1 |
| 1 |
| x-y+1 |
| 1 |
| x-y+1 |
解答:解:∵1+cos2(2x+3y-1)=
,
∴1+cos2(2x+3y-1)=
∴1+cos2(2x+3y-1)=
∴1+cos2(2x+3y-1)=
∴1+cos2(2x+3y-1)=(x-y+1)+
∵(x-y+1)+
≥2,或(x-y+1)+
≤-2
1≤1+cos2(2x+3y-1)≤2
故1+cos2(2x+3y-1)=(x-y+1)+
=2
此时x-y+1=1,即x=y
2x+3y-1=kπ,即5x-1=kπ,x=
(k∈Z)
xy=x2=
(k∈Z)
当k=0时,xy取得最小值
故答案为:
| x2+y2+2(x+1)(1-y) |
| x-y+1 |
∴1+cos2(2x+3y-1)=
| x2+y2+2x+2-2xy-2y |
| x-y+1 |
∴1+cos2(2x+3y-1)=
| (x-y)2+2(x-y)+2 |
| x-y+1 |
∴1+cos2(2x+3y-1)=
| (x-y+1)2+1 |
| x-y+1 |
∴1+cos2(2x+3y-1)=(x-y+1)+
| 1 |
| x-y+1 |
∵(x-y+1)+
| 1 |
| x-y+1 |
| 1 |
| x-y+1 |
1≤1+cos2(2x+3y-1)≤2
故1+cos2(2x+3y-1)=(x-y+1)+
| 1 |
| x-y+1 |
此时x-y+1=1,即x=y
2x+3y-1=kπ,即5x-1=kπ,x=
| kπ+1 |
| 5 |
xy=x2=
| (kπ+1)2 |
| 25 |
当k=0时,xy取得最小值
| 1 |
| 25 |
故答案为:
| 1 |
| 25 |
点评:本题考查的知识点是基本不等式在最值问题中的应用,余弦函数的单调性,其中根据已知条件,得到1+cos2(2x+3y-1)=(x-y+1)+
=2,是解答本题的关键.
| 1 |
| x-y+1 |
练习册系列答案
相关题目
若实数
x、y满足(1+i)x+(1-i)y=2,则xy等于[
]|
A .1 |
B .2 |
C .-2 |
D .-1 |