题目内容

将函数y=a(x+2)2n+bx2n(a>0,n∈z且n>0)向右平移一个单位后是一个偶函数,则y=ax2+bx+c的单调递减区间为______.
y=a(x+2)2n+bx2n(a>0)向右平移一个单位后可得y=a(x+1)2n+b(x-1)2n
由该函数为偶函数可得,a(-x+1)2n+b(-x-1)2n=a(x+1)2n+b(x-1)2n
即a(x-1)2n+b(x+1)2n=a(x+1)2n+b(x-1)2n
∴(a-b)(x-1)2n=(a-b)(x+1)2n
由x∈R可得a=b>0
则y=ax2+bx+c=a(x+
1
2
)
2
+c-
a
4
的单调递减区间为:(-∞,-
1
2
]

故答案为:(-∞,-
1
2
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网