题目内容
求和:2+22+222+…
=
(10n-1)-
(10n-1)-
.
| ||
| n个 |
| 20 |
| 81 |
| 2n |
| 9 |
| 20 |
| 81 |
| 2n |
| 9 |
分析:先求出通项22…2=
(10n-1),然后利用分组求和,结合等差数列与等比数列的求和公式即可求解
| 2 |
| 9 |
解答:解:∵22…2=
(10n-1)
∴2+22+222+…
=
[(10-1)+(102-1)+…+(10n-1)]
=
[(10+102+…+10n)-n]
=
[
-n]
=
(10n-1)-
故答案为:
(10n-1)-
| 2 |
| 9 |
∴2+22+222+…
| ||
| n个 |
| 2 |
| 9 |
=
| 2 |
| 9 |
=
| 2 |
| 9 |
| 10(1-10n) |
| 1-10 |
=
| 20 |
| 81 |
| 2n |
| 9 |
故答案为:
| 20 |
| 81 |
| 2n |
| 9 |
点评:本题主要考查了分组求和方法的应用及等差数列、等比数列的求和公式的应用,解题的关键是准确找出所求数列的通项公式
练习册系列答案
相关题目