题目内容

12.设α、β$∈(\frac{π}{2},π)$,且sinαcos(α+β)=sinβ,则tanβ的最小值是$-\frac{\sqrt{2}}{4}$.

分析 由条件利用两角和差的正弦公式、同角三角函数的基本关系可得 2tan2α•tanβ+tanβ-tanα=0,再根据△=1-8tan≥0,求得tanβ的最小值.

解答 解:∵sinαcos(α+β)=sinβ=sin[(α+β)-α],
∴sinαcos(α+β)=sin(α+β)cosα-cos(α+β)sinα,
化简可得 tan(α+β)=2tanα,即 $\frac{tanα+tanβ}{1-tanα•tanβ}$=2tanα,
∴2tan2α•tanβ-tanα+tanβ=0,
∴△=1-8tan2β≥0,
解得-$\frac{\sqrt{2}}{4}$≤tanβ≤$\frac{\sqrt{2}}{4}$,
∵β∈($\frac{π}{2}$,π),∴-$\frac{\sqrt{2}}{4}$≤tanβ<0,
故答案为:-$\frac{\sqrt{2}}{4}$.

点评 本题主要考查两角和差的正弦公式,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网