题目内容
如图,把边长为2的正六边形ABCDEF沿对角线BE折起,使
.
(1)求证:面ABEF⊥面BCDE;
(2)求五面体ABCDEF的体积.
(1)求证:面ABEF⊥面BCDE;
(2)求五面体ABCDEF的体积.
解:(1)设原正六边形中,AC∩BE=O,DF∩BE=O',
由正六边形的几何性质可知 ,AC⊥BE,DF⊥BE
∵
,
∴OA⊥面BCDE,
∴面ABEF⊥面BCDE;
(2)由BE⊥面AOC,BE⊥面FO'D知,
面AOC∥面FO'D,
故AOC﹣FO'D是侧棱长(高)为2的直三棱柱,
且三棱锥B﹣AOC和E﹣FO'D为大小相同的三棱锥
∴VABCDEF=2VB﹣AOC+VAOC﹣FO'D
=
=
由正六边形的几何性质可知 ,AC⊥BE,DF⊥BE
∵
∴OA⊥面BCDE,
∴面ABEF⊥面BCDE;
(2)由BE⊥面AOC,BE⊥面FO'D知,
面AOC∥面FO'D,
故AOC﹣FO'D是侧棱长(高)为2的直三棱柱,
且三棱锥B﹣AOC和E﹣FO'D为大小相同的三棱锥
∴VABCDEF=2VB﹣AOC+VAOC﹣FO'D
=
=
练习册系列答案
相关题目