题目内容
设直线L1:y=k1x+p,p≠0交椭圆Γ:
+
=1(a>b>0)于C、D两点,交直线L2:y=k2x于点E.
(1)若E为CD的中点,求证:k1•k2=-
;
(2)写出上述命题的逆命题并证明此逆命题为真;
(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).
| x2 |
| a2 |
| y2 |
| b2 |
(1)若E为CD的中点,求证:k1•k2=-
| b2 |
| a2 |
(2)写出上述命题的逆命题并证明此逆命题为真;
(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).
(1)证明:设C(x1,y1)D(x2,y2)E(x0,y0),则
+
=1 (1),
+
=1 (2)
两式相减得
+
=0
即
+
=0…(3分)
∴k1=
=
=-
∴k1•k2=-
…(7分)
(2)逆命题:设直线L1:y=k1x+p交椭圆Γ:
+
=1 (a>b>0)于C、D两点,交直线L2:y=k2x于点E.若k1•k2=-
,则E为CD的中点.…(9分)
证法一:由方程组
?(b2+a2
)x2+2k1pa2x+a2p2-a2b2=0…(10分)
因为直线L1:y=k1x+p交椭圆C、D于C、D两点,
所以△>0,即a2
+b2-p2>0,设C(x1,y1)、D(x2,y2)、E(x0,y0)
则∴x0=
=
,y0=
=
…(12分)
?
又因为k1•k2=-
,所以
,故E为CD的中点.…(14分)
证法二:设C(x1,y1)D(x2,y2)E(x0,y0)
则
+
=1 (1),
+
=1 (2)
两式相减得
+
=0
即k1=
=
…(9分)
又∵k1•k2=-
,k2=
,
=
即
=
…(12分)∴k1+
=k1+
得x1+x2=2x0∴y1+y2=2y0,即E为CD的中点.…(14分)
(3)设直线L1:y=k1x+p,p≠0交双曲线Γ:
-
=1 (a>0 ,b>0)于C、D两点,交直线L2:y=k2x于点E.
则E为CD中点的充要条件是k1•k2=
.…(16分)
| x12 |
| a2 |
| y12 |
| b2 |
| x22 |
| a2 |
| y22 |
| b2 |
两式相减得
| (x1-x2)(x1+x2) |
| a2 |
| (y1-y2)(y1+y2) |
| b2 |
即
| 2x0(x1-x2) |
| a2 |
| 2y0(y1-y2) |
| b2 |
∴k1=
| y1-y2 |
| x1-x2 |
| -b2•x0 |
| a2•y0 |
| b2 |
| a2•k2 |
∴k1•k2=-
| b2 |
| a2 |
(2)逆命题:设直线L1:y=k1x+p交椭圆Γ:
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a2 |
证法一:由方程组
|
| k | 21 |
因为直线L1:y=k1x+p交椭圆C、D于C、D两点,
所以△>0,即a2
| k | 21 |
则∴x0=
| x1+x2 |
| 2 |
| -k1pa2 | ||
b2+a2
|
| y1+y2 |
| 2 |
| pb2 | ||
b2+a2
|
|
|
又因为k1•k2=-
| b2 |
| a2 |
|
证法二:设C(x1,y1)D(x2,y2)E(x0,y0)
则
| x12 |
| a2 |
| y12 |
| b2 |
| x22 |
| a2 |
| y22 |
| b2 |
两式相减得
| (x1-x2)(x1+x2) |
| a2 |
| (y1-y2)(y1+y2) |
| b2 |
即k1=
| y1-y2 |
| x1-x2 |
| -b2•(x1+x2) |
| a2•(y1+y2) |
又∵k1•k2=-
| b2 |
| a2 |
| y0 |
| x0 |
| y1+y2 |
| x1+x2 |
| x0 |
| y0 |
| k1x1+p+k2x2+p |
| x1+x2 |
| kx0+p |
| x0 |
| 2p |
| x1+x2 |
| p |
| x0 |
得x1+x2=2x0∴y1+y2=2y0,即E为CD的中点.…(14分)
(3)设直线L1:y=k1x+p,p≠0交双曲线Γ:
| x2 |
| a2 |
| y2 |
| b2 |
则E为CD中点的充要条件是k1•k2=
| b2 |
| a2 |
练习册系列答案
相关题目