题目内容
已知α为第三象限角,f(α)=
.
(1)化简f(α);
(2)若cos(α-
)=
,求f(2α)的值.
sin(α-
| ||||
| tan(-α-π)sin(-α-π) |
(1)化简f(α);
(2)若cos(α-
| 3π |
| 2 |
| 1 |
| 5 |
(1)已知α为第三象限角,f(α)=
=
=-cosα.
(2)若cos(α-
)=
,则有-sinα=
,即 sinα=-
.
再由α为第三象限角,可得cosα=-
,
∴f(2α)=-cos2α=1-2cos2α=1-2(-
)2=-
.
sin(α-
| ||||
| tan(-α-π)sin(-α-π) |
| -cosα•sinα•(-tanα) |
| -tanα•sinα |
(2)若cos(α-
| 3π |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
再由α为第三象限角,可得cosα=-
2
| ||
| 5 |
∴f(2α)=-cos2α=1-2cos2α=1-2(-
2
| ||
| 5 |
| 23 |
| 25 |
练习册系列答案
相关题目