题目内容
甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.
(I)若以A表示和为6的事件,求P(A);
(Ⅱ)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?
(Ⅲ)这种游戏规则公平吗?试说明理由
解:(I)基本事件空间与点集
中 的元素一一对应.
因为S中点的总数为5×5=25(个),所以基本事侉总数为n=25
事件A包含的基本事件数共5个:
(1,5)、(2,4)、(3,3)、(4,2)、(5,1),
所以
(Ⅱ)B与C不是互斥事件.因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意
(Ⅲ)这种游戏规则不公平.由 (Ⅰ)知和为偶数的基本事件数为13个:
(1,1)、(1,3)、(1,5)、(2,2)、(2,4)、(3,1)、(3,3)、(3,5)、(4,2)、(4,4)、(5,1)、
(5,3)、(5,5)
所以甲赢的概率为
,乙赢的概率为
,
所以这种游戏规则不公平
练习册系列答案
相关题目