题目内容

已知O为坐标原点,  =(2asin2x,a), =(1,-2sinxcos x+1),F(x)= ·+b(aba≠0),?

(1)求y=F(x)的单调递增区间;

(2)若F(x)的定义域为[,π],值域为[2,5],求a,b的值.

解:(1)f(x)= ·+b

=2asin2x-2asinxcosx+a+b??

=a(1-cos2x)-asin2x+a+b?

=-2asin(2x+)+2a+b.                                                                                      ?

a>0时,由2+≤2x+≤2+(k∈Z),得y=f(x)的单调递增区间为[+,+ ](k∈Z);                                                                                                       ?

a<0时,由2-≤2x+≤2+ (k∈Z),得

y=f(x)的单调递增区间为[-,+](k∈Z).?                                         ?

(2)f(x)=-2asin(2x+)+2a+b,?

x∈[,π],2x+∈[,],?

sin(2x+)∈[-1, ].                                                                           ?

a>0时,?

不满足ab,舍.                                                                                                      ?

a<0时,                                                            ?

综上,a=-1,b=6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网