题目内容
19.已知双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的左焦点为F,点P为双曲线右支上一点,点A满足$\overrightarrow{AP}•\overrightarrow{AF}=0$,则点A到原点的最近距离为( )| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 设F'为双曲线的右焦点,PF的中点为M,由双曲线的定义可得|PF|-|PF'|=2$\sqrt{3}$,再由中位线定理可得|OM|=$\frac{1}{2}$|PF'|,求得A的轨迹:A在以PF为直径的圆上,当O,A,M共线时,可得OA取得最小值,计算即可得到所求最小值.
解答 解:设F'为双曲线的右焦点,PF的中点为M,由双曲线的定义可得
|PF|-|PF'|=2a=2$\sqrt{3}$,
由OM为三角形PFF'的中位线,可得|OM|=$\frac{1}{2}$|PF'|,
又点A满足$\overrightarrow{AP}•\overrightarrow{AF}=0$,可得A在以PF为直径的圆上,
当O,A,M共线时,可得OA取得最小值,且为|OA|=r-|OM|=$\frac{1}{2}$|PF|-|OM|=$\frac{1}{2}$|PF|-$\frac{1}{2}$|PF'|=$\sqrt{3}$.
故选:C.
点评 本题考查两点的距离的最小值的求法,注意运用双曲线的定义和圆的性质,及三点共线取得最小值,考查运算能力,属于中档题.
练习册系列答案
相关题目
7.设双曲线$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1的一条渐近线为y=-2x,且一个焦点与抛物线y=$\frac{1}{4}$x2的焦点相同,则此双曲线的方程为( )
| A. | $\frac{5}{4}$x2-5y2=1 | B. | 5y2-$\frac{5}{4}$x2=1 | C. | 5x2-$\frac{5}{4}$y2=1 | D. | $\frac{5}{4}$y2-5x2=1 |
11.若双曲线M:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{6}$=1(m>0)的离心率为2,则双曲线N:x2-$\frac{{y}^{2}}{m}$=1的渐近线方程为( )
| A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
8.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-2\overrightarrow b}|≤2$,则$\overrightarrow b$在$\overrightarrow a$上的投影的取值范围是( )
| A. | $[{\frac{1}{2},2}]$ | B. | $({\frac{1}{2},2})$ | C. | $[{\frac{1}{2},1}]$ | D. | $({\frac{1}{2},1})$ |